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Abstract

The two-point correlation function of inhomogeneous hard sphere fluids is ana-

lyzed within a certain version of weighted density functional theory. We have deter-

mined the direct correlation function and, based on the Ornstein-Zernicke equation,

its inverse yielding the structure factor for such fluids confined by hard, structure-

less, and parallel walls. We have also calculated the excess coverage and the finite

size contribution to the free energy are computed as function of the slit width L for

various bulk densities. In quantitative agreement with rigorous results the present

version of density functional theory yields a constant and large but finite number

density profile in the slit for the limiting case that L is reduced to the diameter of

the hard spheres.

Keywords: statistical mechanics, solid-fluid equilibria, interfacial tension, corre-

lation functions
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1. Introduction

With the advent of new powerful neutron and synchroton sources diffuse scat-

tering experiments of X-rays and neutrons from interfaces are realizable and give

access to the total correlation function at these inhomogeneities [1]. In order to be

able to interpret such data theoretical guidance is necessary. Here we provide a first

step towards that goal by presenting the total correlation function of a hard sphere

fluid close to hard walls. This simple model fluid captures the main features of the

packing effects at short distances as they occur also in fluids governed by additional,

attractive interactions. Furthermore the knowledge of the structural properties of

hard sphere fluids is a prerequisite for treating attractive interactions pertubatively

within a density functional theory approach. This system also has an importance

of its own, because it can closely resemble the properties of colloidal suspensions, in

which the correlation functions are directly accessible [2].

2. Theory

Density functional theory is based on the property of equilibrated systems, which

are exposed to an external potential V (R), that all measurable quantities are unique

functionals of the number density profile ρ(R) which minimmizes the grand cano-

nical free energy functional

Ω([ρ̃(R)];µ, T ) = Fex([ρ̃(R)];T ) + Fid([ρ̃(R)];T )−
∫
d3R (µ− V (R))ρ̃(R) (1)

depending on the chemical potential µ and the temperatur T = 1/(kBβ).

Fid([ρ̃(R)];T ) = 1
β

∫
d3R ρ̃(R)(ln(Λ3ρ̃(R)) − 1) is the free energy functional of an

ideal gas with de Broglie wavelength Λ and Fex([ρ̃(R)], T ) captures those contribu-
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tions to the free energy of the system which are induced by the pair potential Φ(R)

between the particles.

Derivatives of these functionals define the hierarchy of the direct correlation

functions,

c(n)([ρ(R)]; R1, . . . ,Rn) := −β
δnFex([ρ(R)], T )

δρ(R1) . . . δρ(Rn)
, (2)

and the one- and two-point correlation functions (u(R) = µ− V (R)):

ρ(R1) := −
δΩ

δu(R1)
=< ρ̂(R1) >, G([ρ(R)]; R1,R2) := −

1

β

δ2Ω

δu(R1)δu(R2)
. (3)

From Eq. (1) one obtains

c(1)([ρ(R)]; R1) = ln(Λ3ρ(R1))− βu(R1) (4)

c(2)([ρ(R)]; R1,R2) =
δ(R1 −R2)

ρ(R1)
−G−1([ρ(R)]; R1,R2), (5)

where G−1 denotes the inverse of the two-point correlation function G. With the

definition of the total correlation function,

h(R1,R2) = (G(R1,R2)− δ(R1 −R2)ρ(R1))/(ρ(R1)ρ(R2)), (6)

Eq. (5) leads to the Ornstein-Zernicke equation

h(R1,R2) = c(R1,R2) +
∫
d3R3 c(R1,R3)ρ(R3)h(R3,R2). (7)

For a given functional Fex([ρ(R)];T ) the total correlation function can be obtained

by calculating the direct correlation function (Eq. (2)) and subsequently inverting

the Ornstein-Zernicke equation (7).

In the following we consider hard spheres of diameter σ exposed to two struc-

tureless hard walls which are described by the external potential

V (R) =


∞ , z < σ, z > L− σ

0 , σ < z < L − σ

. (8)
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Minimizing the functional Ω([ρ(R)];µ, T ) (Eq. (1)) yields the density profile ρ(R),

which can be characterized by the excess coverage

Γ(L) :=
∫ L−σ

σ
dz [ρ(z)− ρb]. (9)

and the contact density ρ(σ). The finite size contribution to the grand canonical

potential Ω([ρ(R)];µ, T ) is defined by

γ(L) := lim
A→∞

1

A
Ω([ρ(R)];µ, T ) + (L− 2σ)P (ρb), (10)

where P (ρb) is the pressure and ρb is the number density of corresponding homoge-

neous bulk fluid at the same chemical potential. A is the cross section of the slit.

These quantities obey the force relation

ρ(σ) = −β

(
∂γ

∂L

)
T,µ

+ βP (ρb) (11)

and the adsorption relation

Γ(L) = −

(
∂γ

∂µ

)
T,L

. (12)

These relations enable one to infer energies of the system from its structural prop-

erties. This facilitates the measurement of the surface tension γ [3], because the

solvation force ρ(σ)/β − P (ρb) is experimentally accessible, and it allows one to

compute it from grand canonical simulations [4] which provide accurate data for

Γ(L). Within density functional theory these three routes will lead to the same

result provided the exact functional is used. However, since only approximations

thereof are available, in practice discrepancies between the different routes are to be

expected. But, as shown in Ref [5], Eq. (11) still holds in the case of a weighted

density approximation (WDA) of the excess free energy functional Fex([ρ(R)];T ).
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Also Eq. (12) is still valid in this case, as one can see by taking the derivative of

the grand canonical potential (Eq. (1))(
∂Ω

∂µ

)
T,L

= −
∫
d3Rρ(R) +

∫
IR3

d3R

{
δF [ρ]

δρ(R′)
− (µ− V (R′))

}
∂ρ(R′)

∂µ
. (13)

According to Eq. (4) for an equilibrium profile the expression in curly brackets

vanishes even in the case of an approximate version of Fex. Differentiating Eq. (10)

finally leads to(
∂γ(L)

∂µ

)
T,L

= −
1

A

∫
d3Rρ(R) + (L− 2σ)

(
∂P

∂µ

)
T

= −
∫ L−σ

σ
dz (ρ(z)− ρb)

which is equivalent to the definition of the coverage (Eq. (9)).

3. Results

In the limit L → ∞ the fluid at each wall reduces to a system consisting of a

hard sphere fluid exposed to a single hard wall. This density profile was determined

by minimizing Eq. (1) within the framework of the so-called LWDA approximation

of the free energy functional [6] and is shown in Fig. 1(a). It is known to compare

well with computer simulations [6]. Close to the wall the profile is rather different

from the corresponding radial distribution function g(R1,R2) := h(R1,R2) − 1 in

the bulk (compare Figs. 1 (a) and 1 (c)), but it has been proven [7] that at larger

distances the decay and the period of the oscillations are the same.

The surface tension of a fluid exposed to a single wall, i. e. γ(L → ∞)/2 as

obtained from Eq. (10)), is given in Fig. 2. It compares very well with computer

simulations [8, 9] and the scaled particle theory (SPT) [10]. The surface tension is

negative and its absolute value increases with increasing bulk density.
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For bulk densities well below the onset of prefreezing near the wall all correlation

functions depend only on the transverse distance r12 =
√

(x1 − x2)2 − (y1 − y2)2 and

the normal coordinates z1 and z2, i. e. for example g(R1,R2) = g(r12, z1, z2). Figure

1 (d) displays the contour lines of the radial distribution function g(r12, z1 = σ, z2).

It resembles the behavior of the bulk correlation function (Fig. 1 (c)), but for small

distances R =
√
r2

12 + (z2 − σ)2 significant deviations occur. The conditional singlet

density ρ(R1|R2) := ρ(z2)g(r12, z1, z2) provides additional insight. It corresponds to

the density distribution of a hard sphere fluid close to a hard wall disturbed by the

presence of a fixed hard sphere particle placed at R2. A contour plot of ρ(R1|R2)

is shown in Fig 1 (b), thus combining Figs. 1 (a) and 1 (d). The dots and circles

denote the maxima and minima, respectively. As contour lines corresponding to

values larger than one are omitted, the dots whose position fullfill z2/σ < 3.5 are

situated in areas where the values of ρ(R1|R2) are larger than one.

At a constant chemical potential µ, chosen to be the same as for a homogeneous

hard sphere liquid whith ρbσ3 = 0.57, the grand canonical potential was minimized

for various slit widths L/σ = 2.025− 8.0. According to Fig. 3 the excess coverage

and the finite size contribution to the free energy show oscillations characterized by

a period of σ and an exponentially decaying envelope. Because of the force relation

(Eq. 11) the same is true for the contact density ρ(σ). In the limit L → 2, it is

known [11] that the density remains finite and is almost constant in the slit. An

expansion of LWDA in terms of L̃ := L− 2σ reveals, that the above exact result is

fullfilled in first order of L̃. (The same is true for other WDA’s [12], but there are

strong indications, that some of them [13] fail.) Within that expansion one obtains:

ρ(z = σ+) = Λ−3 exp(
µ

kT
)(1− ρ(σ)πσ2L̃+O(

(
L̃

σ

)2

)),
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Γ(L→ 2σ)) = (L− 2σ)
(
Λ−3 exp(βµ)− ρb

)
+O(

(
L

σ

)2

)
L→2σ
→ 0,

and

−γ(L) =

(
1

β
ρ(σ)− PPY

)
(L− 2σ) +O(

(
L̃

σ

)2

). (14)

This implies that in the grand canonical ensemble in the limit L̃ → 0 the fluid is

squeezed out of the slit and that the the number density < N > /A of the particles

per area still contained inside the slit vanishes linearly as the width is decreased.

Thus we conclude that the hard sphere fluid in a slit connected to a reservoir does

not resemble the genuinely two-dimensional hard disc fluid. Only if the chemical

potential diverges in a proper way or if one resorts to the canonical ensemble, a

truley two-dimensional fluid can be formed.

The radial distribution function g(r12, z1, z2) of confined colloidal particles as a

function of r12 parallel to the wall, i. e. z1 = z2, can be measured directly by means

of video microscopy [2]. The analysis within the framework of LWDA reveals that

in the case of a bulk density less than 0.68σ3 and for L
>
∼ 5σ the correlation function

g(r12, z1 = σ, z2 = z1) is essentially equal to the one of the semi-infinite system. At a

fixed slit width the correlation function depends sensitively on the normal coordinate

z1 = z2. Thus a good depth resolution in such experiments is necessary. For a fixed

width L = 5.1σ and a corresponding bulk density ρb = 0.545σ3 Fig. 4 displays the

radial distribution function g(r12, z1 = 1.64σ, z2 = z1). In the corresponding density

profile the density ρ(z1 = 1.64σ)σ3 = 0.409 exhibits a local minima. There have been

efforts [14, 15] to approximate the correlation function of a inhomogeneous liquid

such that in the case z1 = z2 it reduces to g(r12, z1, z2) ≈ gb(r = r12; ρb = ρ(z1)).

Figure 4 indicates that in general this kind of approximation is not appropriate, but

only simulations could give a definite answer.
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4. Conclusions

We have determined the finite size contribution to the free energy γ(L) (Eq.

(10)) and the total correlation function (Eq. (6)) of a hard sphere fluid confined

by two parallel hard walls at distance L. For L → ∞ γ(L) reduces to twice the

wall-surface tension which compares very well with simulation data. Inspite of simi-

larities between the structure of the inhomogeneous correlation function and its bulk

counterpart significant discrepancies occur. The finite size contribution to the free

energy γ(L) shows pronounced oscillations as function of L and is consistent with

values obtained via the force and the coverage relations (Eqs. (11) and (12)). The

structure of the correlation function close to one wall differs significantly from that

of a semi-infinite system only for narrow slits (L
<
∼ 5σ).
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Figure captions

Figure 1: The density profile ρ(R) (a) and the contour lines for the conditional

singlet density ρ(R1|R2) = ρ(z2)g(r12, z1 = σ, z2) (b) and for the radial distribution

function g(r12, z1 = σ, z2) (d) of a hard sphere fluid close to a planar hard wall at

a bulk density of ρbσ3 = 0.81. For comparison also the radial distribution function

gb(r) of a homogeneous hard sphere liquid at the same chemical potential is shown in

(c) (note the different vertical scale). The dots and circles in (b) denote the positions

of the local maxima and minima, respectively. The values of the correlation function
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varies by an amount of 0.2σ−3 between neighbouring contour lines in (b) For reason

of clarity in both cases contour lines corresponding to values larger than σ−3 and

1.0, respectively, are omitted.

Figure 2: The surface tension of a hard sphere fluid exposed to a single hard wall

at various bulk densities ρb. The squares and triangles denote molecular dynamics

[8] and Monte Carlo [9] simulation data, respectively. The full line represents the

present results of the density functional theory within LWDA and the dotted line

corresponds to the scaled particle theory [10].

Figure 3: The finite size contribution γ(L) (Eq. (10)) to the free energy and the

excess coverage Γ(L) of a hard sphere fluid between two hard walls for various slit

widths L/σ = 2.025− 6.5 at a bulk density of ρbσ3 = 0.57. In the limit L→∞ the

value of γ(L) approaches γ(∞) = −1.03/(βσ2) which is twice the value shown in

Fig. 2.

Figure 4: The radial correlation function g(r12, z1 = 1.64, z2 = z1) of a hard sphere

fluid in a slit of width L = 5.1 for a corresponding bulk density of ρbσ3 = 0.546. It

is compared with the bulk correlation function at the same density and at a reduced

density ρ(z1 = 1.64σ) = 0.409/σ3, respectively. This demonstrates, that in the

present case choosing the actual local density instead of the bulk density for the

bulk approximation of g is even worse.
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Fig. 2
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Fig. 3
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